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ABSTRACT

The Storm Prediction Center (SPC) tornado database, generated from NCEI’s Storm Data publication, is

indispensable for assessing U.S. tornado risk and investigating tornado–climate connections. Maximizing the

value of this database, however, requires accounting for systemically lower reported tornado counts in rural

areas owing to a lack of observers. This study uses Bayesian hierarchical modeling to estimate tornado reporting

rates and expected tornado counts over the central United States during 1975–2016. Our method addresses a

serious solution nonuniqueness issue that may have affected previous studies. The adopted model explains 73%

(.90%) of the variance in reported counts at scales of 50 km(.100 km). Populationdensity explainsmore of the

variance in reported tornado counts than other examined geographical covariates, including distance from

nearest city, terrain ruggedness index, and road density. The model estimates that approximately 45% of tor-

nadoes within the analysis domain were reported. The estimated tornado reporting rate decreases sharply away

from population centers; for example, while .90% of tornadoes that occur within 5 km of a city with

population. 100 000 are reported, this rate decreases to,70% at distances of 20–25 km. Themethod is directly

extendable to other events subject to underreporting (e.g., severe hail and wind) and could be used to improve

climate studies and tornado and other hazard models for forecasters, planners, and insurance/reinsurance

companies, as well as for the development and verification of storm-scale prediction systems.

1. Introduction

Tornado climatologies have a wide range of valuable

applications, including developing economic loss models

and benefit–cost analyses for tornadoes (e.g., Simmons

et al. 2015; Grieser and Terenzi 2016; Romanic et al.

2016); evaluating tornadowarning performance and how it

has changed over time (e.g., Brooks and Correia 2018);

statistically modeling physical influences on tornado fre-

quency (e.g., Kellner and Niyogi 2014; Elsner et al. 2016a);

investigating relationships between tornado length, width,

and intensity (e.g., Brooks 2004; Agee and Childs 2014);Corresponding author:Dr.CoreyK.Potvin, corey.potvin@noaa.gov
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analyzing tornado risk (Tecson et al. 1983; Schaefer et al.

1986; Coleman and Dixon 2014); and identifying climate

signals in tornado activity (e.g., Brooks et al. 2014; Allen

et al. 2015; Guo et al. 2016; Cook et al. 2017). The success

of such efforts, however, can be severely compromised by

database errors arising from reporting biases. Of particular

interest to the present study is the tendency for tornadoes

in rural areas to go unreported due to a lack of observers,

which produces artificial spatial and temporal trends in

analyses of tornado frequency. Much effort has been de-

voted to estimating and removing this underreporting bias

(e.g., Ray et al. 2003; Feuerstein et al. 2005; Verbout et al.

2006; Anderson et al. 2007; Widen et al. 2013; Agee and

Childs 2014; Elsner et al. 2016b).

While the influence of reporting errors on the tornado

database is readily recognized, quantifying the resulting

biases is complicated by at least three problems arising

from general limitations of statistical modeling. First,

the period of the database is short enough that sampling

error produces locally significant departures of the ob-

served tornado frequency from the underlying (i.e., ex-

pected) distributions at smaller spatial scales. This is

because tornado reports cluster in space and time owing

to 1) the random clustering that occurs even for com-

pletely spatially random processes and 2) the additional

clustering that results from tornado outbreaks and

families (i.e., groups of tornadoes spawned by the same

thunderstorm). The resulting sampling errors must be

carefully accounted for to avoid data overfitting (i.e.,

fitting noise rather than the underlying distribution).

Second, the underlying tornado distributions may

themselves be substantially nonuniform in space or time

at the smaller scales of interest, making it difficult to

distinguish real from artificial gradients in tornado fre-

quency. For example, it has been hypothesized that

tornado frequency maxima exist that are much smaller

scale than the ‘‘tornado alleys’’ defined in the litera-

ture due, for example, to local topography (Broyles and

Crosbie 2004). It is also possible that tornado distribu-

tions have changed during the database period due to

anthropogenic climate change or natural climate vari-

ability (e.g., Allen et al. 2015; Brooks et al. 2014; Tippett

et al. 2015). Departures from spatial or temporal ho-

mogeneity therefore cannot be immediately attributed

to geographical or temporal trends in reporting bias.

Third, while many variables have already been im-

plicated in tornado reporting bias, including population

(e.g., Anderson et al. 2007), distance from nearest city

(e.g., Widen et al. 2013), and distance from nearest

Weather Surveillance Radar-1988 Doppler (WSR-88D;

Ray et al. 2003), there may be other variables that are

yet unknown to be important or that are difficult to

measure and include in the analysis. For example, it is

plausible that cultural differences between National

Weather Service (NWS) Weather Forecast Offices

(WFOs) impact the probability of suspected tornadoes

in distant rural areas being surveyed (e.g., Doswell

2007), but it is unclear how to quantify this effect.

Omitting explanatory variables results in a portion of the

variation in the sample population being misattributed

to the model covariate(s), producing errors in the diag-

nosed dependencies of the predicted variable. When this

‘‘omitted-variable bias’’ is suspected to be large, care

must be taken in interpreting the results.

With these considerations in mind, we develop a

Bayesian hierarchicalmodel to estimate tornado reporting

rates (TRRs) and actual expected tornado counts from the

SPC tornado database. Themethod incorporates elements

of previously published Bayesian approaches to this

problem but adds a novel feature that addresses a serious

solution nonuniqueness issue that may have impacted

previous studies. The nonuniqueness arises from the fact

that similar numbers of tornado reports can occur with

high actual tornado counts and low TRRs as with low

actual tornado counts and high TRRs. Our analysis do-

main covers most of the central United States for the

period 1975–2016. We motivate and describe our

Bayesian model in section 2. In section 3, we describe

the development and cross validation of the model. The

results of the final model-predicted TRR and expected

tornado counts are presented in section 4. Finally, po-

tentially valuable extensions of this work are summa-

rized in section 5.

2. Data and Bayesian model

a. Gridding reported tornado counts

We use the 1975–2016 portion of the SPC tornado

database for analysis. Omitting earlier years from the

analysis avoids the systematic overrating of tornadoes

that occurred prior to the adoption of the Fujita scale in

1975 (Brooks and Craven 2002). Following Elsner et al.

(2016b), tornado records having the same starting lo-

cation, date and time, length, and width as another re-

cord in the database are flagged as duplicates and

removed. This results in the omission of 329 out of 45 954

reports (;0.7%). The remaining reports are then tallied

within 10-km-diameter grid cells on an 1800km 3
1800km Mercator grid centered at 38.78N, 92.08W
(Fig. 1a). The northeastern 600 km 3 600 km corner of

the domain is excluded from the analysis to avoid diffi-

culties with grid cells within the Great Lakes. The

analysis domain includes ;62% of all (nonduplicate)

1975–2016 tornado reports in the database. Tornadoes

are treated as points located at the midpoint of the line
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segment bounded by the recorded start and end coor-

dinates. If no end location is recorded (typically because

the tornado track is too short), the tornado location is set

to the start coordinate.

Visual inspection of the gridded tornado counts

(Fig. 1) reveals two important considerations. First, the

noisiness of the counts at smaller scales (Figs. 1a,c)

suggests much of the variance therein arises from

sampling error, which is expected given the brevity of

the record. Second, the strong correlation of local

count maxima with cities (Fig. 1b) indicates that

underreporting of tornadoes in rural areas introduces

severe bias even at larger scales. It is critical to account

for both errors when interpreting and analyzing re-

ported tornado counts.

b. TRR model

Following previous studies, we use a Bayesian hierar-

chical model (Davidson-Pilon 2016) comprising a TRR

model and a spatial process model to calculate posterior

distributions of TRRs and expected tornado counts

l conditional on the reported counts N. TRR is mod-

eled as a function of a single geographical covariate (e.g.,

population density). The spatial processmodel is necessary

to account for the stochastic nature of tornado occurrence.

We use the Python pymc3 module (Salvatier et al. 2016)

FIG. 1. Reported 1975–2016 tornadoes (a) tallied over 10-km grid cells, then (b) smoothedwith aGaussian kernel

of width 2s 5 20 km to aid interpretation. Tornado counts in the northeastern corner of the domain are not shown

since they are not used in the analysis. In this and subsequent figures, NWS county warning area (CWA) borders are

represented in gray, WFOs by black circles, cities with population $ 100 000 (‘‘100K cities’’) in 1990 by green

circles, and interstate highways in magenta. (c) The region enclosed in the black square in (a) is magnified to better

illustrate the noisiness of the data.
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to obtainMarkov chainMonte Carlo (MCMC) samples of

the posterior distributions. Parameter trace plots and the

Geweke (1992) convergence diagnostic are used to con-

firm the suitability of the prior distribution assigned to each

model parameter and of the prescribed ‘‘burn in’’ period

for each Markov chain.1

We experimented with several geographical covariates

for the TRR model, some of which are computed at

the center of the grid cell (distance-related parameters)

and others of which are averaged over the grid

cell (remaining parameters). The tested covariates are

population density P; terrain ruggedness index (TRI;

Riley et al. 1999); road density R; tree canopy percent-

age T, and distance to nearest 100 000 resident city C,

5000 resident city c, WFO W, interstate I, WFO or

100 000 resident city CW, and interstate or 5000 resident

city cI. Several of these covariates are plotted in Fig. 2.

City population data, required for computing C, c, CW,

and cI, were available for 1990 and 2000. Gridded pop-

ulation data, required for computing P, were available

for 1990, 2000, and 2010. Temporal interpolation was

not used to estimate population in intervening years;

rather, the city and gridded population datasets valid

nearest the mean year of the analysis period were used.

The gridded population data were averaged from their

native 1-km grids onto the 10-km analysis grid. As will

be shown in section 3a, P explains more variance in re-

ported counts than any of the other tested covariates

The relationship of TRR to each geographical co-

variate can be crudely estimated using the following

procedure:

1) To account for large-scale gradients in actual tornado

frequency, divide the reported tornado count within

each grid cell by themean of the gridded countswithin a

suitable (herein, a 250-km square) neighborhood.

2) Bin each covariate (e.g.,C5 0–5 km, 5–10km, and so

on) and identify the set of grid cells lying within

each bin.

3) Average the normalized counts within each bin.

4) Consider the ratios of average normalized counts

between bins; these provide estimates of the ratios of

domain-mean TRR between bins.

The analysis reveals that TRR is quite sensitive to each of

the geographical covariates (Fig. 3). An important im-

plication of the resulting large TRR gradients is that

making the analysis grid spacing too large, and therefore

the gridded tornado counts too smooth, artificially de-

creases (increases) model-predicted TRR in urban (ru-

ral) areas. On the other hand, reducing the analysis grid

spacing rapidly increases the computational cost of the

model. We found that 10-km grid spacing provides an

acceptable trade-off between these effects for our data-

set. Rerunning the final model (described in section 3)

with 5-km grid spacing produces mean posterior TRR

and l results (not shown) very similar to those produced

with 10-km grid spacing (section 4b).

We model TRR as either a negative exponential

function or a fourth-degree polynomial function2 of the

geographical covariate x:

TRR 5 TRR
min

1 (12TRR
min

) exp(2bx), and (1)

TRR 5 1:0 1 ax 1 bx2 1 cx3 1 dx4 , (2)

where b is assigned a lognormal prior with m 5 0.5 and

s 5 2; a, b, c, and d are assigned normal priors with m5 0

and s 5 10; and TRRmin is a constant that prevents the

TRRposteriors from falling below aprescribed limit. Both

TRR models are designed such that TRR/ 1 as x/ 0;

the reason for this is described in section 2c. Since x $ 0

and b $ 0, TRR 2 [TRRmin, 1] for the negative expo-

nential model. When using the polynomial model, TRR is

clipped to [TRRmin, 1] during the MCMC sampling.

The use of TRRmin in the TRRmodels was motivated

by preliminary experiments with P in which the TRR

posterior locally approached zero in the (sparsely pop-

ulated) western part of the domain when a lower limit

was not imposed. While this unrealistic behavior of the

TRR models did not degrade the posterior N in those

(or other) regions, it did inflate the posterior l to com-

pensate for the negatively biased TRR. The source and

our solution for this parameter aliasing problem are

explained in section 2c. Since P explains more vari-

ance in reported counts than any of the other tested

covariates, we are only interested in TRR estimates from

the TRR(P) model, and therefore we set TRRmin 5 0 in

experiments with other x.

To stabilize theMCMC sampling, especially when the

polynomial model is used, we transform each x such that

xt 2 [0, 1]. For covariates other than P, we obtain xt by

dividing x by a constant. For P, which has a larger

1 The burn-in period is the series of initial Markov chain states

that is considered unrepresentative of the distribution being sam-

pled and is, therefore, discarded from the final Markov chain out-

put. This period can be determined subjectively by inspecting trace

plots of the Bayesian parameters and estimating how many itera-

tions were required for their means to converge, or objectively by

using the Geweke (1992) diagnostic to determine whether a sta-

tistically significant shift in each parameter mean has taken place

by a prescribed number of iterations.

2 In preliminary tests, third- and fifth-degree polynomials tended

to underfit and overfit the data, respectively.
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‘‘dynamic range’’ than the other covariates, we first

impose a lower bound of 0.001, then transform the result

as follows:

P
t
5 [log

10
(P)1 4]/10. (3)

Preliminary experiments with multivariable models

(both negative exponential and polynomial) for TRR

failed to produce nontrivial improvements over the

simple Pmodel. It seems unlikely, however, that TRR is

completely determined by P (or any single variable).

This suggests that the noise in the reported tornado

counts inhibits the use of more complex models.

Some previous studies have modeled reported tor-

nado counts with a spatial Poisson distribution (e.g.,

FIG. 2. Maps of several of the geographical variables tested as covariates in the Bayesian model: (a) base-10

logarithm of population density (km22), (b) distance from nearest 100K city (km), (c) distance from nearest 5K city

or interstate (km), (d) road density [8 (0.18)22], (e) terrain ruggedness index [m (0.18)22], and (f) percent tree

canopy. The 1990 population data were used for (a)–(c). The top-right corner in (d) is masked since the road density

dataset excludes part of this region.
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Anderson et al. 2007). This distribution describes a

spatial point pattern generated by a completely spatially

random process with prescribed frequency l, which in

our application is the expected actual tornado count per

grid cell. Tornadogenesis locations are not completely

spatially random, however; tornadic thunderstorm out-

breaks and tornado families lead to considerable over-

dispersion, as evidenced by variance-to-mean ratios well

above unity in both reported (Elsner and Widen 2014)

and model-predicted actual tornado counts (not shown).

FIG. 3. Domain-mean normalized N vs (a) base-10 logarithm of population density (km22), (b) distance from nearest 100K city (km),

(c) distance from nearest 5K city or interstate (km), (d) road density [8 (0.18)22], (e) terrain ruggedness index [m (0.18)22], and (f) percent

tree canopy. Large, medium, and small dots represent gridpoint counts . 100, 30–100, and ,30, respectively.
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Thus, following Elsner andWiden (2014) and Elsner et al.

(2016a), we adopt a negative binomial (NegBin) distri-

bution model for reported tornado counts, which allows

the variance of the counts to vary independently of the

mean. The pymc3 formulation of the negative binomial

distribution follows a gamma distribution with m 5 l and

shape parameter a. We assign a a half-normal prior with

s 5 100 and set the expected reported tornado count to

TRR3 l, as in Elsner et al. (2016a). Thus, the distribution

of reported tornado counts N within each grid cell over

the analysis period is modeled as

N5NegBin(m5TRR3 l, a5a) . (4)

The l are assigned uniform priors over [0, 10].

c. Addressing solution nonuniqueness

In preliminary experiments, the Bayesian model was

run independently within individual subdomains similar to

Anderson et al. (2007), except that the subdomains were

square with diameterD set to 100 or 300km. The resulting

TRRand l posteriors contained unrealistic discontinuities

between adjacent subdomains (not shown). This problem

arises primarily from a solution nonuniqueness problem

that, to the authors’ knowledge, has not been addressed in

the literature. Specifically, the product TRR 3 l in the

Bayesian model [Eqs. (4) and (5)] means similar N values

are predicted for low TRR and high l as for high TRR

and low l (i.e., aliasing occurs between TRR and l; the

end of section 2b alluded to this problem). Thus, the TRR

and l posteriors will be unrealistically sensitive to the va-

garies of the data andmodel parameters and are, therefore,

meaningless. Obtaining high-confidence estimates of TRR

and l therefore requires constraining one or the other

in some reasonable way.3 We have already explained

(section 2b) thatwe impose a lower limit onTRR(TRRmin)

to address this solution nonuniqueness. Fully resolving the

problem, however, additionally required imposing anupper

limit onTRR.Wedid this by adding a fixedparameterPmax

to the population density covariate formula [Eq. (4)] such

thatPt$ Pmax5 0 and, thus, TRR(Pt$ Pmax)5 1. That is,

we assume all tornadoes are reported within grid cells

where the population density exceeds a prescribed thresh-

old. The final P input to the model is therefore

P
final

5

�
0, P

t
$P

max

P
max

2P
t
, P

t
,P

max

. (5)

The procedure for selectingPmax is described in section 3b.

Constraining TRR in this way greatly reduced, but

did not totally eliminate, the spurious intersubdomain

discontinuities in model-predicted TRR (not shown).

Attributing the remaining discontinuities primarily to

insufficient sample sizes, we then reformulated the hi-

erarchical model such that TRR is trained over the

entire analysis domain simultaneously but l is still

trained independently within (i.e., allowed to vary be-

tween) square analysis subdomains. The combina-

tion of all three approaches mostly eliminated the

remaining intersubdomain discontinuities. With these

important modifications, our final Bayesian model

produces posteriors of domain-constant b or (a, b, c, d),

depending on the TRR model used; a corresponding

TRR posterior valid on the analysis grid; and a

l posterior valid on a coarser grid with spacing D.

3. Model development

a. Prediction metrics

Given how noisy the reported tornado counts are

(Fig. 1a), there is serious potential for fitting meaningless

patterns in the data, especially with our polynomial TRR

model. We therefore use k-fold cross validation (Efron

and Tibshirani 1993) to assess and compare the predictive

capabilities of different models. The method proceeds as

follows. First, the original sample (of analysis subdomains,

in our case) is divided into equally sized (to the extent

possible) subsamples. The model is trained on k 2 1 of

the subsamples and then validated on the remaining

subsample. This training–testing process is repeated until

each of the k subsamples has served as the testing set. We

chose k 5 10 for our tests; this is a common choice of k

since it allows most of the sample to be used in each

training fold and provides reasonably low-variance error

estimates without being unduly computationally expen-

sive. We select as validation metrics the coefficient of

determination R2, sample Pearson correlation coefficient

r, and relative root-mean-square error (RRMSE). We

also compare domain-mean reported and out-of-sample

predicted counts as functions of each geographical vari-

able to further assess how well the model captures the

geographical dependencies of N.

b. Sensitivity to geographical covariate

Cross validation was performed for each TRR model

covariate using both the polynomial and negative expo-

nential models. While D 5 100km was adopted for the

final model (section 3c), these tests usedD 5 300km for

computational expediency and because the relative per-

formance of the TRR models with different covariates

3We experimented with including a conditional autoregressive

model for l and training the model over the entire analysis domain

simultaneously, as in Elsner et al. (2016b). The resulting TRR

posteriors, however, were often obviously biased, indicating the

additional constraint did not mitigate the solution nonuniqueness.
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was not qualitatively sensitive toD (not shown). Since the

accuracy of the posterior N is insensitive to whether or

not the solution nonuniqueness issue is addressed, we

set TRRmin 5 0 and Pfinal 5 Pt [Eqs. (3) and (5)] in the

experiments with P. The results (Table 1) indicate

population density is the best geographical covariate of

those tested formodelingTRR.All subsequently discussed

experiments therefore use Pfinal as the TRR model co-

variate. The polynomial TRR model produces slightly

higher R2 values than the negative exponential model.

The improvement in R2 and the impact on the predicted

TRR and l (,5%) are small enough, however, that we

adopt the negative exponential model to reduce compu-

tational cost and mitigate the threat of overfitting.

c. Selecting Pmax and TRRmin

To determine Pmax, we inspected Fig. 3a and noted that

normalized counts no longer increase beyond some

threshold log10P2 [1.75, 3], that is,Pt2 [0.575, 0.7] [Eq. (3)].

This implies that TRR ’ 1 within grid cells exceeding this

(uncertain) threshold. We therefore cross validated models

withD5 100km and Pmax set to 0.575, 0.6, 0.625, 0.65, and

0.7. For each Pmax, we varied TRRmin among 0.2, 0.25, and

0.3. The differences in R2, r, and RRMSE were small

(,5%; not shown) and likely statistically insignificant,

which is expected given the solution nonuniqueness issue

that using Pmax and TRRmin is intended to address. Some

combinations of these parameters, however, produced large

model biases at high-P locations (e.g., Figs. 4b,e). Using

Pmax 5 6.0 minimized the model bias for all three tested

TRRmin (e.g., Figs. 4c,d). Since the cross-validation results

favor noneof the testedTRRmin options over the others, we

present results for all three in section 4. Themean posterior

TRR obtained for TRRmin 5 0.2 (shown later) and

TRRmin5 0.25, however, were judged by the authors to be

too low in rural areas west of the Interstate Highway 35

(I-35) corridor, given the higher density of storm chasers

and spotters and longer viewing distances (due to flatter

terrain and fewer trees; Figs. 2e,f) compared to regions far-

ther east. We therefore adopted TRRmin 5 0.3 in our final

model. While the inability to objectively optimize TRRmin

increases the uncertainty in the posterior TRR and l over

the western part of the domain (illustrated in section 4), this

is an unavoidable consequence of the TRR–l aliasing.

d. Selecting subdomain size

Wenext compared cross-validation statistics for the final

TRR model with D alternately set to 100, 150, 200, and

300km. The validation statistics improve as D decreases,

with R2 5 0.112, 0.130, 0.136, and 0.156 for D 5 300, 200,

150, and 100km, respectively, which is consistent with our

expectation that l varies substantially down to scales of

100 km or less. While it is tempting to reduce D below

100 km, we judged that the l uncertainty at those scales

would become too large for most applications. This as-

sessment was based on the increase of the standard de-

viation of the out-of-sample posterior l asD is decreased

from 300 to 100km (Fig. 5), and our recognition that the

model-implied l uncertainty may substantially underes-

timate the actual l uncertainty at smaller scales. This

underestimation inevitably arises from the omitted vari-

ables bias (e.g., storm chaser density, distance from

nearest WFO, and other potentially important variables

are unaccounted in the TRR model), the use of pre-

scribed parameters in the model, and the increasing de-

viations of the actual counts from l at smaller scales due

to both random clustering of tornadoes andmultitornado

events. We therefore set D 5 100km in our final model.

4. Final model cross validation and predictions

a. Cross validation of final model

The geographical dependence of the actualN and (out of

sample) predicted N obtained using the final model match

reasonably well (Figs. 6 and 7). This indicates that the low

R2 values obtained in our experiments (Table 1) result

not from failure of the model to capture important geo-

graphical dependencies of TRR, but from the small-scale

noise in actual N (owing to the brevity of the record)

dominating theTRRdependence (signal) at individual grid

cells. This is reflected in the rapid improvement of the cross-

validation statistics with scale (Fig. 8).4 For example, R2

values are approximately 0.16 and 0.73 at scales of 10 and

50km, respectively, and.0.9 at scales$ 100km (Fig. 8b).

b. Predictions of final model

We now present in-sample mean posteriors of TRR

and l obtained by the final model. The TRR rapidly

TABLE 1. Out-of-sample R2 for 10-fold cross-validation tests of

each TRR model covariate (rows) for the negative exponential

(exp) and polynomial (poly) models (columns).

Covariate R2 (exp) R2 (poly)

P 0.116 0.127

C 0.056 0.065

W 0.055 0.067

c 0.067 0.080

I 0.062 0.071

CW 0.055 0.071

cI 0.071 0.081

T 0.039 0.054

TRI 0.047 0.054

R 0.069 0.095

4 The local maximum in performance at S 5 100 km arises from

our use of D 5 100 km.
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decrease just outside of population centers and become

quite low in very rural areas (Figs. 9 and 10), which is

expected given the crude analysis presented earlier

(Fig. 3). This has the desired effect of reducing the

artificial maxima over cities in the mean posterior l (cf.

Figs. 11a and 11b). The mean posterior l are gener-

ally at least twice as large as the smoothed actual

N throughout the analysis domain, indicating that lit-

eral interpretation of the U.S. tornado database leads

to severe underestimation of tornado frequency.

FIG. 4. Domain-mean, out-of-sample predicted N (black) and actual N (red) vs base-10 logarithm of population density (km22) for

(a)Pmax5 5.75, TRRmin5 0.2; (b)Pmax5 5.75, TRRmin5 0.3; (c)Pmax5 6.0, TRRmin5 0.2; (d)Pmax5 6.0, TRRmin5 0.3; (e)Pmax5 6.25,

TRRmin 5 0.2; and (f) Pmax 5 6.25, TRRmin 5 0.3.
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More specifically, the model predicts that only;45% of

tornadoes that occurred within the analysis domain were

reported; that is, the actual tornado rate is ;2.2 times

the reported rate. One major implication of this result is

that the tornado production rates among supercells and/

or quasi-linear convective systems have been sub-

stantially underestimated (e.g., Trapp et al. 2005). An-

other implication of this substantial underreporting is

that U.S. tornado warning probability of detection

(POD) and false alarm rate (FAR) have both been

overestimated. Moreover, the presumed increase in

TRR with time (in tandem with population density) has

introduced a potentially substantial downward trend in

POD and FAR.

Using TRRmin 5 0.2 (Figs. 12a,b) produces similar

results as TRRmin 5 0.3 (Figs. 10 and 11a) over most of

the domain, but over the western regions, substantially

lower TRR and therefore higher l occur. Again, we

judge the TRR inferred by this model to be too low in

the western part of the domain. Not imposing a lower

limit at all (i.e., TRRmin 5 0) allows TRR to become

even lower (Fig. 12c) and l even higher (Fig. 12d) over

the western areas. Both TRRmin 5 0.2 and TRRmin 5 0

cause a marked westward shift of the analyzed tornado

alley (cf. Figs. 11a with Figs. 12c,d). This misleading

result illustrates the importance of accounting for the

TRR–l aliasing problem by intelligently constraining

TRR in low- (and high-) population areas. In an

FIG. 5. Relative standard deviation (%) of out-of-sample l posterior from final TRRmodel withD5 (a) 300, (b) 200, (c) 150, and (d) 100 km.
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FIG. 6. Domain-mean, out-of-sample predicted N (black) and actual N (red) vs (a) base-10 logarithm of population density (km22),

(b) distance from nearest 100K city (km), (c) distance from nearest 5K city or interstate (km), (d) road density [8 (0.18)22], (e) terrain

ruggedness index [m (0.18)22], and (f) percent tree canopy. Large, medium, and small dots represent grid point counts . 100, 30–100,

and ,30, respectively. Note that the actual N values are not normalized as in Fig. 3.
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experiment with TRRmin 5 0.5 (not shown), spatial

trends in the model-predicted l were quite similar to

those obtained using TRRmin5 0.3. Thus, even were our

adopted TRRmin too low (which seems unlikely given

Fig. 3), this would not degrade qualitative interpretation

of the results.

5. Conclusions and future work

Tornadoes are often unreported due to a lack of ob-

servers, producing major biases in tornado report data-

bases and climatological analyses derived from them.

Hierarchical Bayesian models have been developed to

infer tornado reporting rates (TRRs) and expected

tornado frequency. Such a model is presented herein

that addresses a serious solution nonuniqueness problem

that may have inhibited previous attempts to improve

analyses of U.S. tornado climatology. Themodel is tested

with an unprecedentedly large range of geographical

covariates, of which population density is found to ex-

plain the most variance in reported tornado counts. At

scales , 50km, however, sampling error due to the

brevity of the tornado record appears to dominate the

underreporting bias. Cross-validation tests confirm that

the final model captures real geographical dependencies

of TRR without excessively fitting noise in the data. The

results suggest only ;45% of tornadoes that occurred

within the central U.S. analysis domain during 1975–2016

were reported. This substantial underreporting has major

implications for our understanding of the distributions of

FIG. 7. (a) Actual N and (b) out-of-sample mean predicted N. (c),(d) As in (a) and (b), but smoothed (2s 5 20 km).
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tornadic versus nontornadic storms (e.g., Trapp et al.

2005) and of how tornado warning performance has

evolved over time (e.g., Brooks and Correia 2018).

There are at least three important considerations for

interpreting our model estimates. First, there are var-

iables that may substantially impact TRR but are not

included in the TRR model, which considers only

population density. These include covariates that were

individually tested herein, such as road density and

distance to nearest city, as well as effects that would be

difficult to quantify, such as storm chaser density and

differing WFO survey practices. Omitting all of these

variables likely introduces locally substantial errors in

the predicted TRR, especially at small scales, and may

FIG. 8. Cross-validation statistics computed at scales S from 10 to 200 km: (a) r, (b) R2, (c) RRMSE (%), and

(d) sample sizes for calculations. Statistics at S. 10 kmwere computed by splitting the analysis domain into square

subdomains with diameter S, summing the predicted and actualN values over each subdomain, and then comparing

the summed counts over the entire domain.

FIG. 9. Domain-mean posterior TRR vs (a) base-10 logarithm of population density (km22) and (b) distance from

nearest 100K city (km).
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also partly explain why so much of the variance in

reported counts remains unexplained even at larger

scales (e.g., 50–100 km). Second, locally large errors in

expected tornado counts may persist where chance

clustering of tornadoes occurred at scales near or

exceeding that of the 100-km analysis subdomains

(though these errors should be substantially smaller

than in the reported tornado counts due to the TRR

bias correction). Third, resolving the solution non-

uniqueness in TRR and the expected tornado counts

requires an ad hoc procedure for constraining one

variable or the other. While the procedure we adopted

is empirically grounded in the relationship between

population density and reported tornado counts and in

assessments of model bias, it does not totally eliminate

the uncertainty introduced by the initial solution

nonuniqueness. We note, however, that adopting

other reasonable choices for the tunable parameters

in the model (e.g., the population density threshold

beyond which TRR is assumed to be unity) produces

domain-wide mean TRR predictions within a few

percentage points of the prediction by our final

model. The sharp decrease in domain-mean reported

tornado counts (normalized by large-scale tornado

counts) away from urban areas (Figs. 3a,b) adds fur-

ther plausibility to the model-predicted domain-mean

TRR 5 0.45.

One of the next steps in this research will be to ex-

amine how the model-predicted TRR varies with re-

ported tornado attributes including pathlength, path

width, and damage rating. It will be interesting to

see, for example, whether the TRR of highly rated

tornadoes decreases as sharply with population den-

sity as that of low-rated tornadoes due to chronic

underrating in regions lacking damage indicators. The

TRR estimates obtained in the present study could be

incorporated into existing Monte Carlo frameworks for

examining U.S. tornado climatology (e.g., Strader et al.

2016). We plan to use such a framework to quantify the

probability of ‘‘mini tornado alleys’’ (Broyles and

Crosbie 2004) in the record arising solely by chance.

We also plan to adapt the Bayesian model to inferring

biases in reported tornado attributes and in the re-

ported frequency of severe hail. The reporting bias

estimates provided by the proposed method could also

FIG. 10. Mean posterior TRR from the final model. As before,

the northeastern corner of the domain is not used in model training

(cf. Fig. 1), but model predictions for this region are shown for

completeness.

FIG. 11. (a) Mean posterior l from the final model, smoothed

using a Gaussian kernel of width 2s5 65 km. (b) Reported counts,

smoothed using same kernel as in (a). Note the different color bars

between (a) and (b).
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aid in the development of detection algorithms, machine

learning techniques, and convective-scale prediction

systems (e.g., Warn-on-Forecast; Stensrud et al. 2009,

2013) that are trained and verified on severe weather

reports.
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